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Roughness scaling in cyclical surface growth
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The scaling behavior of cyclical growth~e.g., cycles of alternating deposition and desorption primary
processes! is investigated theoretically and probed experimentally. The scaling approach to kinetic roughening
is generalized to cyclical processes by substituting the number of cyclesn for the time. The roughness is
predicted to grow asnb whereb is the cyclical growth exponent. The roughness saturates to a value that scales
with the system sizeL asLa, wherea is the cyclical roughness exponent. The relations between the cyclical
exponents and the corresponding exponents of the primary processes are studied. Exact relations are found for
cycles composed of primary linear processes. An approximate renormalization group approach is introduced to
analyze nonlinear effects in the primary processes. The analytical results are backed by extensive numerical
simulations of different pairs of primary processes, both linear and nonlinear. Experimentally, silver surfaces
are grown by a cyclical process composed of electrodeposition followed by 50% electrodissolution. The
roughness is found to increase as a power law ofn, consistent with the scaling behavior anticipated theoreti-
cally. Potential applications of cyclical scaling include accelerated testing of rechargeable batteries and im-
proved chemotherapeutic treatment of cancerous tumors.

DOI: 10.1103/PhysRevE.64.051604 PACS number~s!: 68.35.Ct, 05.70.Ln, 68.43.Mn, 81.10.Aj
p
ve
o
g

ce
th
p
-
d
r
cs
i
i

a
e

d

i
-
n
-
gh

s

ug

ight
f

e

th

e

I. INTRODUCTION

From diffusion-limited aggregation to molecular beam e
itaxy ~MBE!, kinetic models of growth and aggregation ha
attracted much attention@1–5# in the last two decades due t
diverse interests in physics, biology, chemistry, and en
neering. Kinetic roughening of nonequilibrium surfa
growth was of particular interest. Crystal growth, the grow
of bacterial colonies, and the formation of clouds in the u
per atmosphere@6# are all examples of nonequilibrium phe
nomena that grow self-affine rough surfaces. On a fun
mental level, the surface growth problem is a paradigm fo
class of problems in nonequilibrium statistical mechani
One crucial aspect of this class is the signature of scale
variance and universality, very similar to those observed
equilibrium critical phenomena, or in nonlinear dynamic
systems@7#. Early investigations focused primarily on th
scaling behavior of the surface roughness@1–5#. More re-
cently they have touched upon other aspects such as the
tribution of the surface width@8,9#, distributions of the
height and the average height velocity@4,10,11#, density of
extrema@12#, persistence@13#, and maximal height@14#.

Processes that generate rough surfaces can be divided
two classes:~i! growth processes~e.g., by deposition, ab
sorption! where the surface grows by adding material; a
~ii ! recession processes~e.g., by erosion, dissolution, or de
sorption! where material is being taken off such that a rou
surface is generated. Examples of class~i! include crystal
growth @1–3#, electroplating @15#, and biological growth
@1,2,5,16#, which have been studied widely. Class~ii ! in-
cludes chemical dissolution@17#, and has received much les
attention than the first class.

Self-affine surfaces generated by growth~or recession!
can be described using scaling analysis of the surface ro
1063-651X/2001/64~5!/051604~12!/$20.00 64 0516
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ness. In general, the surface is characterized by the he
h(rW,t) appropriate to a (d̃5d21)-dimensional substrate o
linear sizeL. The width of the surfaceW(L,t) at a timet is
given by

W~L,t !5Š@h~rW,t !2^h~rW,t !&#2
‹

1/2, ~1!

where^h(rW,t)& is the average height, which is linear in tim

^h(rW,t)&5vt, v being the average growth~or recession! ve-
locity. The angular bracketŝ& denote an average over bo
lateral sites and the ensemble of surface configurations.

W(L,t) scales as@18#

W~L,t !;La f „L/j~ t !…;La f ~L/t1/z!, ~2!

wherej(t);t1/z is the lateral correlation length andf is the
scaling function. For large timet@Lz

W;La,

while for t!Lz

W;tb,

whereb5a/z is the growth exponent. The height-differenc
correlation function

D~r ,t !5^@h~rW01rW,t !2h~rW0 ,t !#2&, ~3!

obeys scaling similar to that of the roughness:

D~r ,t !;r 2a f „r /j~ t !…;r 2a f ~r /t1/z!. ~4!

For r !t1/z

D;r 2a,
©2001 The American Physical Society04-1
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while for r @t1/z

D;t2b.

The relation between the height-difference correlation fu
tion D(r ,t) defined above and the equal-time height-hei
correlation functionC(r ,t)5^h(rW01rW,t)h(rW0 ,t)& is simple:

D~r ,t !52@C~0,t !2C~r ,t !#. ~5!

Dynamic scaling in Fourier space is studied in terms of
structure factorS(qW ,t)5^h(qW ,t)h(2qW ,t)&, whereh(qW ,t) is
the Fourier transform of the heighth(rW,t). The scaling hy-
pothesis Eq.~2! can be translated to the Fourier space su
that

S~qW ,t !5q2d22ag~q/t21/z!. ~6!

The surface widthW can be readily calculated fromS(qW ,t)
using the relationW2(L,t)5(1/Ld̃)(qWS(qW ,t). In the theoret-
ical analysis of surface growth it is convenient to work
Fourier space and compute first the structure factor ra
than the roughnessW itself. Also, in some experiments th
surface is probed by scattering processes which provide
structure factor.

All processes within the same universality class share
same critical exponents. Their continuum growth equati
differ at most by terms that are rendered irrelevant by
renormalization group flow. The asymptotic continuum s
chastic equations corresponding to different universa
classes~indexed byi 51,2, . . . ) are of theform of a Lange-
vin equation

]h~rW,t !

]t
5Ai$h%1h i~rW,t !1v i , ~7!

whereAi$h% is a local functional depending on the spat
derivatives ofh(rW,t) and the noiseh i(rW,t) reflects the ran-
dom fluctuations in the deposition process and sa
fies ^h i(rW,t)&50 and ^h i(rW1 ,t1)h i(rW2 ,t2)&52Did

d̃(rW1

2rW2)d(t12t2). Some generic processes and their univers
ity classes are reviewed later~Sec. III!.

In the present paper we focus on cyclical processes
which deposition and desorption are occurring alternat
Examples of cyclical processes are abundant in nature
technological applications. A technologically important e
ample is rechargeable batteries, where metal is electrode
ited on an electrode during the discharge, followed by par
electrochemical dissolution of this metal during rechargi
In chemotherapy treatment of cancer the malignant cells
subjected to a recessive cyclical process.

The basic premise of our scaling approach to cyclical p
cesses is that the number of cyclesn should substitute for the
time variable. So we propose for cyclical processes that
scaling relation of Eq.~1! be replaced with
05160
-
t

e

h

er

its

e
s
e
-
y

l

-

l-

in
y.
nd
-
os-
l
.
re

-

e

Wc~L,n!;La f c„L/jc~ t !…;La f c~L/n1/z!, ~8!

wherejc;n1/z is the correlation length andf c is the cyclical
scaling function. For largen, n@Lz,

W;La,

while for n!Lz

W;nb,

whereb5a/z is the growth exponent.
The rest of the paper is organized as follows. The n

Sec. II is devoted to our analytical analysis. We will pro
that Eq.~8! for cyclical scaling holds asymptotically for lin
ear processes. In addition we will show how to obtain t
scaling exponents of the cyclic process, given those of
two primary processes. An approximate renormalizat
group RG approach is introduced to study nonlinear effe
Section III contains a brief review of the generic universal
classes and their lattice algorithms. Then we introduce o
algorithms to implement numerically different recession p
cesses. The actual results of our simulation of cyclical p
cesses are described in Sec. IV. In Sec. V the experime
findings from cyclical electrodeposition/dissolution of silv
are discussed. Section VI contains the conclusions wit
discussion of potential practical applications of the cyclic
scaling approach. A short summary of some of the res
was published in Ref.@19#.

II. ANALYTICAL RESULTS

The analytical approaches are based on a stochastic e
tion, like Eq.~7!, which describes the growth process. Thu
we begin by obtaining the stochastic equation of the cycli
process. The first primary process is denoted byi 51 and the
second byi 52. The durations of the first and second pr
cesses areT15pT and T25(12p)T, respectively (p and
12p are the fractional parts of the two processes!. The total
time period for one cycle isT5T11T2. The cyclic growth
equation in terms of the basic two processes can be
pressed as

]h

]t
5@a1h1h11v1#Q„p2 f ~ t !…

1@a2h1h21v2#Q„f ~ t !2p…, ~9!

where f (t) is defined as the fractional part oft/T andQ(x)
is the unit step function.

A. Linear primary processes: Exact calculation ofSc„q¢ ,t…

First we will consider cyclical processes for which bo
the primary processes are linear. For linear processesAi$h%
5ai(¹W )h(rW,t), whereai(¹W ) is a linear differential operator
Time reversal symmetry is obeyed in this case if the heigh
measured relative to the average height. The average he
depends on the growth (v i.0) and recession (v i,0) nature
4-2
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ROUGHNESS SCALING IN CYCLICAL SURFACE GROWTH PHYSICAL REVIEW E64 051604
of the primary processes. In terms of the average velo
vc5pv11(12p)v2, it is given by

^h~rW,t !&/T5nvc1v1f ~ t !Q„p2 f ~ t !…

1$~v12v2!p1v2@ f ~ t !#%Q„f ~ t !2p….

~10!

The roughness is insensitive to the sign ofv i and hence will
not distinguish between growth/growth and growth/recess
cyclical processes as long as the basic processes remai
ear.

For linear processes Langevin equations of the form
Eq. ~7! are easily solved in Fourier space to yield~assuming
spatial isotropy in the basal plane! the structure factor

S~q,t !5exp$22a~q!t%S~q,0!1
D

a~q!
$12exp@22a~q!t#%,

~11!

whereS(q,0) is the structure factor att50, which contains
the information about the initial roughness. During thenth
cycle of cyclical growth, the structure factorSc„q,@(n21)
1p#T… generated by the first primary process~of duration
T15pT) is assigned as the initial condition for the seco
primary process. The second process lasts forT25(12p)T
to yield the structure factorSc(q,nT) of the cyclical process
aftern cycles. This is again used as the initial structure fac
for the first process in the (n11)th cycle.

During the first cycle, the structure factor after th
completion of the first primary process becomes

S~q,T1!5exp$22ā1%S~q,0!1
D1

a1
@12exp~22ā1!#,

~12!

where āi5ai(q)Ti was defined. This is the initial structur
factor for the second primary process and after the first c
plete cycle we obtain

S~q,T2!5exp$22~ ā11ā2!%S~q,0!

1exp$22ā2%H D1

a1
@12exp~22ā1!#J

1
D2

a2
@12exp~22ā2!#, ~13!

whereSc(q,T)[S(q,T2). Proceeding in this manner, we fi
nally arrive at the structure factorSc(q,n)[S(q,nT) of the
cyclic growth aftern cycles as a geometric series which c
be readily summed to yield
05160
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Sc~q,n!5exp$22ācn%S~q,0!

1FD1

a1
exp~22ā2!$12exp~22ā1!%

1
D2

a2
$12exp~22ā2!%GF12exp~22ācn!

12exp~22āc!
G ,

~14!

whereāc5acT with

ac5@a1p1a2~12p!#. ~15!

In the scaling limit of smallq, Eq. ~14! for Sc(q,n) reduces
to

Sc~q,n!;
Dc

ac~q!
$12exp@22ac~q!Tn#%, ~16!

with the effective noise strength for the cyclic process d
fined as

Dc5pD11~12p!D2 . ~17!

In terms of the effective parametersac andDc , the above
structure factor for the cyclical process resembles that o
generic linear growth process@see Eq.~11!# with the number
of cyclesn as the new time variable. Effectively the time
being coarse grained over a period ofT by eliminating the
high frequency (.2p/T) modes. Hence we can use the sta
dard scaling analysis@Eq. ~6!# of the structure factor to de
termine the scaling exponents in the case of cyclical grow

After a large number of cyclesn the interface width be-
comes saturated. In that limit, Eq.~15! becomesSc(q,n)
;Dc /ac(q). The roughness exponent of the cyclic proces
determined by theq→0 divergence of 1/ac(q). Since
ai(q);qzi, it is the process with smallerzi that dominates
the asymptotic cyclical roughness, and the roughness e
nent is given by ac5min(a1 ,a2)5 1

2 $min(z1 ,z2)2(d
21)%. The primary process with thesmaller roughness im-
poses its roughness exponent on the combined cyclical
cess. The largera i appears as a correction to the scali
exponent. Whether or not it is the leading one depends
how its contribution compares with that of the subleadi
term inai(q) of the dominating primary process. Note that
subleading term inac(q) might affect the behavior on a
smaller scale, if its amplitude is large. In that case, the le
ing behavior takes over only beyond a crossover length~at
which both contributions are comparable!. Since the ampli-
tudes ofa1 anda2 in Sc(q,n) are proportional top and (1
2p), respectively, the longer the nondominant process la
the larger is the crossover scale, as could be expected. H
ever, although inac(q) only the dominantai(q) is important
beyond this crossover scale, this is not the case for the ef
tive noise correlatorDc , which is a scale independent con
stant in Eq.~16!. Thus, theamplitudeof the leading power-
law roughness is determined by both the primary proces

In the growing phase of the interface roughness, the
namic exponentz will dictate the cyclical power law behav
ior. Sincen is multiplied byac5@a1p1a2(12p)#T in Eq.
4-3
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~16! and ai(q);qzi, the process with smallerzi will again
dominate the cyclical dynamics in theq→0 asymptotic limit
to yield zc5min(z1 ,z2). Then for the initial cycles (nT
!Lz) the surface width will scale asnb, with bc5ac /zc . In
essence, the scaling exponents of the cyclic growth will
identical to those of the primary process with the smallerzi .

B. Coarse-graining approach: The cyclic propagatorGc„r¢,t…

In the previous section the structure factorSc(qW ,t) @and
hence its Fourier transform~FT! Sc(rW,t)# was obtained ex-
actly. The same method of successive integration of the
clical equation of motion may be applied to derive the cyc
propagatorGc(rW,t) @or its FT Gc(qW ,t)#. However, the ex-
pression is cumbersome and not very useful. Since we o
need the long-time behavior, we will take a different route
coarse-graining the equation of motion such that the equa
for time scales larger thanT will be derived andGc(rW,t) can
be read from it. This will also provide a direct connection
the RG approach introduced in the next section to study
behavior of nonlinear systems.

Our starting point is Eq.~9!, which we choose to integrat
over one cycle, such that the remaining equation will b
difference equation between the average heights of two
secutive cycles. So assume we average Eq.~9! on time t
P@nT,(n11)T#. The integral will be divided into integra
tion over two intervals: interval~1! @nT,nT1T1# and inter-
val ~2! @nT1T1 ,(n11)T#. We define the average height
the nth cycle as

H~rW,n!5
1

TEn

n11

dt h~rW,t !. ~18!

Our goal is to obtain the equation of motion forH(rW,n)
on time scalest.T. The FT of Eq.~9! is

]h~qW ,t !

]t
5@a1~qW !h~qW ,t !1h11v1#Q„p2 f ~ t !…

1@a2~qW ! h~qW ,t !1h21v2#Q„f ~ t !2p… ~19!

5ac~qW !h~qW ,t !1@Da1~qW !Q„p2 f ~ t !…
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1Da2~qW !Q„f ~ t !2p…#h~qW ,t !

1~h11v1!Q„p2 f ~ t !…1~h21v2!Q„f ~ t2p!…,

whereDa1(qW )5a1(qW )2ac(qW ) andDa2(qW )5a2(qW )2ac(qW ).
Let us now integrate each of the terms over one cycle,
ginning with the left-hand side:

1

TEn

n11

dt
]h~qW ,t !

]t
5

1

T
@h„qW ,~n11!T…2h~qW ,nT!#

5
1

T
@H~qW ,n11!2H~qW ,n!#

1
1

T
$@h„qW ,~n11!T…2H~qW ,n11!#

2@h~qW ,nT!2H~qW ,n!#%. ~20!

The first term can be expressed asDH(qW ,n)/TDn. The sec-
ond term contains the differences between the height at
beginning of the cycle and its average over a cycle. This te
thus reflects the behavior within each cycle and is thus ir
evant to the behavior on the coarse-grained scale and wi
dropped.~Note that it will vanish asymptotically and it is
irrelevant since in the continuum limit it features a seco
derivative with respect tot.!

The integration of the first term on the right-hand si
yields

1

TEn

n11

ac~qW !h~qW ,t !dt5ac~qW !H~qW ,n!. ~21!

Integrating the second term,
1

TEn

n11

@Da1~qW !Q„p2 f ~ t !…1Da2~qW !Q„f ~ t !2p…#h~qW ,t !dt

5
Da1~qW !

T E
n

n1p

h~qW ,t !dt1
Da2~qW !

T E
n1p

n11

h~qW ,t !dt

5Da1~qW !pH 1

T1
E

n

n1p

h~qW ,t !dtJ 1Da2~qW !~12p!H 1

T2
E

n1p

n11

h~qW ,t !dtJ
5Da1~qW !p H1~qW ,n!1Da2~qW !~12p!H2~qW ,n!

5@Da1~qW !p1Da2~qW !~12p!#H~qW ,n!1$Da1~qW !p@H1~qW ,n!2H~qW ,n!#1Da2~qW !~12p!@H2~qW ,n!2H~qW ,n!#%,

~22!
4-4
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ROUGHNESS SCALING IN CYCLICAL SURFACE GROWTH PHYSICAL REVIEW E64 051604
whereH1(qW ,n) andH2(qW ,n) are the average heights durin
the two primary processes respectively~on the nth cycle!.
Upon coarse graining,

1

TEn

n11

@Da1~qW !Q„p2 f ~ t !…1Da2~qW !Q„f ~ t !2p…#h~qW ,t !dt

5@Da1~qW !p1Da2~qW !~12p!#H~qW ,n!. ~23!

This term contains information on the structure factor with
the cycle and must vanish in the coarse-grained equa
sinceac was chosen@Eq. ~15!# such that

~a12ac!p1~a22ac!~12p!50. ~24!

The velocity term yields the average velocity

1

TEn

n11

dt@v1Q„p2 f ~ t !…1v2Q„f ~ t !2p…#5vc . ~25!

The noisesh are random variables and we define this coar
grained term by

hc~n!5
1

AT
F E

n

n1p

dt h1~ t !1E
n1p

n11

dt h2~ t !G . ~26!

It obeys^hc(n)&50 and^hc(n)hc(m)&52Dcdnm , andDc
satisfies Eq.~17!.

Collecting all the terms, the coarse-grained differen
equation forH(qW ,n) is

DH~qW ,n!

TDn
5ac~qW !H~qW ,n!1hc~qW ,n!1vc . ~27!

For n@1, the difference equation is equivalent to the cor
sponding differential equationDH/Dn.]H/]n.

The cyclical propagator may be read from this line
equation:

Gc~qW ,n2m!5exp$2ac~qW !~n2m!%Q~n2m!. ~28!

This propagator obeys the usual relation with the struct
factor if n is treated as a continuous variable replacing
time t:

Sc~qW ,n!5
Dc

ac~qW !
@12uGc~qW ,n!u2#. ~29!

C. Nonlinear primary processes

Stochastic nonlinear equations of this type can be a
lyzed using the perturbative dynamic RG approach@2,23#.
We develop an approximate RG technique for cyclical p
cesses with one or both the primary processes being no
ear. The first step is to set aside~for the initial RG iterations!
all the nonlinearities from the primary processes and t
only the linear Langevin equations. We showed above h
to solve for the structure factor of such cyclical proces
and get an effectiveSc(q,n) @see Eq.~16!# of a noncyclic
05160
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process. Similarly, we have shown in the previous subsec
how to obtain the propagatorGc(q,n) of the same effective
linear, noncyclical process. The second step is to take
effective ‘‘free’’ propagatorGc(q,n) and then add back al
the nonlinear terms of the primary processes as pertu
tions. The bare couplings of the nonlinear terms are mu
plied byp and (12p) to take into account the relative dura
tions of the two primary processes. The third and the fi
step is to study the RG flow of the parameters and determ
the fixed points of the transformations and hence the sca
exponents. This dynamic RG procedure is approximate in
sense that the initial flow of the couplings is shifted, but
long as the starting point is not close to a separatrix in
parameter space~i.e., a border line between basins of attra
tion of two different fixed points! this will not alter the ulti-
mate fixed point of the RG flow.

The cyclical process might have only one nonlinear p
mary process with the nonlinear perturbation being relev
under RG transformations. Then the cyclical scaling ex
nents are given by the exponents of the nonlinear prim
process. Otherwise, the nonlinear term turns out to be ir
evant with respect to the dominant linear term~present in the
coarse-grained cyclic free propagator! of the other~linear!
primary process, of which the scaling exponents control
cyclic growth.

Both the primary processes might contain nonlinear ter
which are treated as perturbations to the free propagato
described above. In most cases, one of the nonlinear te
will make the other one irrelevant under the RG flow and
primary process containing the relevant nonlinearity w
carry through its scaling exponents for the cyclical proce
If both the nonlinear terms are relevant, then the possibi
of new cyclical growth exponents~different from those of
both primary processes! cannot be ruled out. A prime cand
date for such behavior will be a cyclical process ind52
11 in which one process has a relevant nonlinearity wh
the second process has a relevant anisotropy in the b
plane@20#.

III. GROWTH MODELS AND UNIVERSALITY CLASSES

In this section we present a brief review of the basic mo
els of kinetic growth. The discrete lattice models for simu
tions corresponding to each universality class are presen
We were able to generalize most of the lattice models
desorption processes~reverse of growth! to be used in
absorption/desorption cycles. These desorption algorith
are described in detail.

A. Random deposition

This is the simplest of all possible growth process
From a randomly chosen site above the surface, a par
falls vertically until it reaches the top of the column under
whereupon it is deposited. In this case

ARD50.

The scaling exponents areb50.5 in all dimensions, buta is
not defined for this model because the interface roughne
never saturated.
4-5
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The random deposition~RD! algorithm is as follows. A
columni is chosen (d5111) randomly and its heighth( i ,t)
is increased by 1. For the reverse process we just decr
the heighth( i ,t) of an arbitrarily chosen sitei by 1.

B. Edwards-Wilkinson universality

In this model we have surface relaxation~in addition to
the random deposition! which is introduced by the term

AEW5n¹2h.

We can exactly calculate the scaling exponentsa5(3
2d)/2, b5(32d)/4, and z52. In Edwards-Wilkinson
~EW! growth @21# a randomly deposited particle can diffus
along the surface up to a finite distance and sticks to a lo
height minimum. Due to this relaxation, the surface becom
smooth compared to the random growth model and fin
the interface roughness is saturated because of the cor
tions among the neighboring heights, to a value;La, where
L is the lateral size.

Family model

This model was introduced by Family@22# to simulate
EW growth. A particle is dropped on a randomly chos
column i ~in d5111) and sticks to the top of the colum
i , i 11, or i 21, depending on which of the three colum
has the smallest height. To simulate a desorption proc
~with EW exponents!, the heighth( i ,t) of the sitei is com-
pared to the heightsh( i 21,t) andh( i 11,t) of the neighbor-
ing sites. Then we simply take a particle off the colum
i , i 11, or i 21, depending on which of the three colum
has the largest height. In the case of a tie involving the si
we take out a particle from that site, otherwise the tie
broken randomly with equal probability. The whole proce
can be thought of as desorption with surface relaxation.
relaxation length is restricted to the nearest neighbors
cause the scaling exponents are independent of the relax
length. In Fig. 1 the roughnessW is plotted against time on a
logarithmic scale for increasing system size. The slope of

FIG. 1. The roughnessW vs t in the EW desorption proces
~log-log plot!. Inset: saturation roughness lnWs vs lnL.
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straight line fitted to the early time roughness yields t
growth exponentb50.2360.02. The roughness expone
a50.4860.03 is extracted from the dependence of the sa
ration roughness on the linear size of the system~inset of
Fig. 1!. These values of the scaling exponents are in ag
ment with the corresponding EW values. Indeed, the surf
roughness for the desorption process shows~Fig. 1! very
similar behavior to that obtained for the growth process@22#.
So the discrete rules described above can be treated
valid algorithm for EW desorption.

C. Kardar-Parisi-Zhang universality

This describes growth in a direction locally normal to t
interface@23#. Its leading effect is to add a nonlinear term
the EW surface relaxation term,

AKPZ5n¹2h1
l

2
~¹h!2.

Scaling exponents for the Kardar-Parisi-Zhang~KPZ! equa-
tion are exactly known ind5111: a51/2, b51/3, and
z53/2. In d5211 approximate values for the exponen
~from numerical simulations! are a.0.39, b.0.24, andz
.1.61. KPZ growth can be simulated using various atom
tic growth algorithms, of which we will describe two be
cause we generalized those to the case of desorption and
will be used in our simulations of cyclical growth.

1. Ballistic deposition model

A particle is released from a randomly chosen posit
above the surface, located at a distance larger than the m
mum height of the interface. The particle follows a straig
vertical path until it reaches the surface, whereupon it sti
@24,25#. If h( i ,t) is the height of the columni ~chosen ran-
domly! at time t then the ballistic deposition~BD! growth
rule is h( i ,t11)5max@h(i21,t),h( i ,t)11,h( i 11,t)#. For
the reverse process the algorithm will be changed toh( i ,t
11)5min@h(i21,t),h( i ,t)21,h( i 11,t)#. Although physi-
cally unrealistic~contrary to its growth counterpart! this de-
sorption model is formally the ‘‘anti-BD’’ process.

2. Restricted solid-on-solid model

This algorithm~also known as the KK model! introduced
by Kim and Kosterlitz @26# gives KPZ exponents and i
known to yield reliable results even for small system siz
The growth rule is to randomly select a site on a cubicd
21)-dimensional lattice and to permit growth by letting th
height of the interfacehi→hi11 provided the restricted
solid-on-solid ~RSOS! condition on neighboring height
uDhu50,1, . . . ,N(N>1) is obeyed at all stages. In a simila
way we can simulate an erosion process where we decr
the height (hi→hi21) of the sitei provided the RSOS con
dition uDhu50,1, . . . ,N is satisfied. In Fig. 2 we show th
results of simulations using this desorption rule. The valu
of the scaling exponents (b50.3360.02 and a50.52
60.02) obtained are consistent with the corresponding K
values.
4-6
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ROUGHNESS SCALING IN CYCLICAL SURFACE GROWTH PHYSICAL REVIEW E64 051604
The RSOS deposition or desorption rule described ab
is defined starting from a flat interface att50. A cyclical
surface growth model with a primary process not obeying
RSOS condition can destroy the height difference restric
of the RSOS model. We can still use a growth rule similar
the RSOS model described above, which seems to be
like KPZ growth ~as far as the scaling exponents are co
cerned!. In this extended model of RSOS, we choose a sii
randomly and add a particle on it only if the height of th
site is less than or equal to the heights of the neighbo
sites ~which would give us the normal RSOS withuDhu
50,1 starting from a flat interface!. For the reverse process
particle is taken off a site only if the height of that site
greater than or equal to the heights of the neighboring s

D. Mullins-Herring universality

In conserved growth situations where ‘‘surface diffusion
is dynamically significant in the absence of any EW rela
ation process, the growth process may belong to the Mull
Herring ~MH! universality class@also known as the Da
Sarma–Tamborenea~DT! or Wolf-Villain class# @27–29#.
The linear surface diffusion equation for MH growth has
term

AMH52K¹4h.

The critical exponents for the MH growth universality a
exactly known theoretically:a5(52d)/2, b5(52d)/8,
andz54. In one dimension (d5111), the roughness expo
nent a51.5 exceeds unity, implying that the large sca
steady state morphology of the growing interface is not s
affine in d5111. The issue of whether MH universality i
only a crossover phenomenon or a true universality clas
still debated@30#. There are two lattice models to simula
MH growth.

1. Das Sarma–Tamborenea model

In this model@28# a particle, after being deposited on
randomly chosen site, relaxes only to the nearest kink s
i.e., it seeks only to increase the number of neighbors.

FIG. 2. The roughnessW vs t in the KPZ ~RSOS! desorption
process~log-log plot!. Inset: maximal roughness lnWs vs lnL.
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2. Kim–Das Sarma model I

Choose a sitei randomly and add a particle oni 21, i , or
i 11 ~in d5111), depending on which site has the large
curvature¹2h5@h(x11)1h(x21)22h(x)# @31#. If there
is more than one site satisfying the larger curvature con
tion, we choose one among them randomly. If the curvat
of the sitei is one of the larger curvatures, we add the p
ticle at sitei.

E. Molecular beam epitaxy universality

The most relevant universality class in the context of co
served epitaxial growth is the molecular beam epitaxy u
versality @which also goes by the name Lai–Das Sarm
Villain universality# @32,33#. This is described by the
nonlinear version of the MH surface diffusion equation w

AMBE52K¹4h1l1¹2~¹h!2.

The scaling exponents are known from a one-loop RG c
culation which givesa5(52d)/3, b5(52d)/(71d), and
z5(71d)/3. There are two discrete models to simulate t
MBE universality class.

1. Lai–Das Sarma model

This model is similar to the DT model described abo
with the difference that if an atom falls in a kink site it
allowed to break its bonds and jump either down or up to
nearest kink site with the smallest step height@32#.

2. Kim–Das Sarma model II

This is a generalization of the Kim–Das Sarma~KD!
model I @31# described above. The only difference
that the linear curvature is replaced by a nonline
curvature @h(x21)1h(x11)22h(x)#2(l/2)$@h(x21)
2h(x)#21@h(x11)2h(x)#2%.

IV. COMPUTER SIMULATIONS
OF CYCLICAL GROWTH

A. Introduction

1. Simulation methods

To test our scaling hypothesis for cyclical processes
performed numerical simulations ind5111 using specific
discrete growth models described above. The system siz
the simulations was changed between 128 and 4096 la
spacings. A periodic boundary condition is employed so t
columnsi and i 1L (L is the system size! are equivalent. A
typical cycle consisted of a deposition of 5–20 layers~aver-
age number of particles deposited per site! and desorption of
between 10% and 100% of the deposited amount. The m
mum number of cyclesn varied between 500 and 10 000
reach saturation. To obtain good statistics we took an a
age over 50–5000 independent runs, depending on the p
of primary processes and the system size. The smaller
system the larger was the number of runs to obtain g
result.
4-7
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2. Time dependence of surface roughness

In a single process of growth or desorption, the roughn
scales with time@Eq. ~2!#. For cycling, we have theoreticall
shown that time is replaced by a different scaling variab
the number of cyclesn. One might ask: how does the cycl
cal roughness change with actual time leading to a scalin
terms ofn? Below we discuss how the time~t! dependence
of the surface roughness of cyclical growths can be stud
to understand the emergent scaling behavior in terms of
number of cyclesn.

Consider a linear growth~or erosion! process. The struc
ture factor for this can be given by Eq.~11!. From that ex-
pression ofS(q,t), the surface widthW25(1/Ld̃)(qWS(qW ,t)
can be expressed as@34#

W2~ t !5W0
2~ t !1Wf lat

2 ~ t !, ~30!

Wf lat(t) is the roughness for growth induced on a flat init
substrate, andW0 is the contribution due to the width of th
rough substrate surface. Since the total width is the sum
decreasing (W0) and an increasing (Wf lat) part, competition
between the two terms can make it increase or decrease
the initial roughnessW0(0) for some time@eventually the
roughness will exceedW0(0)#.

In cycling two primary processes act alternately. T
roughness generated by one process is taken as the i
roughnessW0(0) for the second process. In Fig. 3 the heig
profile is shown for cyclic growth with random depositio
and EW desorption. EW dissolution smooths the very rou
surface produced by random growth in one cycle. Also n
that the roughness increases with the number of cyclesn. In
Fig. 4 we show the actual time dependence of the simula
cyclical growth composed of two linear primary process
belonging to the EW and MH universality classes. In o
cycle, MH growth increases the surface width and then E
surface relaxation smooths out the surface to lessen

FIG. 3. Height profile for RD/EW cyclical growth.L5512 and
40 particles/site of random deposition~solid line! and 20 particles/
site of EW dissolution~broken line! are used in one cycle~both
axes are in lattice units!.
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roughness. The average behavior of surface roughnes
terms of cycles increases and gives rise to scaling. The s
ing exponents are determined by the relevant~in the RG
sense! terms of the primary processes. In our example~Fig.
4!, MH/EW cycles are dominated by the surface relaxat
of the EW model and the process gives rise to EW ex
nents. The change in roughness within a cycle can be tho
of as fluctuations in the average behavior, and becomes
important as the number of cycles is increased~Fig. 4!. Simi-
lar scaling~in terms ofn) continues to hold for cyclic growth
when one or both the primary processes are nonlinear.

3. Extraction of scaling exponents

The growth exponentb is extracted for different system
sizesL. The roughnessW vs n is plotted on a logarithmic
scale and the slope of the best fitted straight line yields
exponentb. The value quoted is from the largestL ~once the
effective b became close to the asymptotic value!. From
Ws(L)5W(L,`), the saturation width dependence onL, the
roughness exponenta can be calculated. Simulation resul
for different system sizes are used to plot lnWs;ln L, which
is fitted to a straight line whose slope measures the expo
a. In some cases we checked independently the value oa
from the scale dependence of the height-difference corr
tion function@from a log-log plot ofD(r ,t) vs r and fit to Eq.
~4!#.

B. Simulation results

1. Linear primary processes

For linear primary processes, we looked at the poss
pairwise combinations of RD, EW, and MH universali
classes using the absorption/desorption algorithms descr
earlier in this paper. When EW and MH processes are co
bined with RD, we obtain EW and MH exponents, respe
tively, because those are the processes that generate co
tions on top of the random growth. Figure 5 shows, for t

FIG. 4. lnW ~roughness!; ln t of the MH/EW cyclic process.
The DT process increases the roughness and EW smooths the
face in a single cycle, but the average roughness increases and
rise to scaling~in terms of cycles!.
4-8
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ROUGHNESS SCALING IN CYCLICAL SURFACE GROWTH PHYSICAL REVIEW E64 051604
RD/EW cyclical process, that the value ofb ~asymptotically!
is independent of the relative duration of the two prima
processes. MH/EW cycles produce an asymptotic cycl
scaling with EW exponentsb50.258(5) ~Fig. 6! and a
50.52(3) ~Fig. 7!. We have also performed data collap
~Fig. 8! to establish the validity of our scaling hypothes
The asymptotic EW exponents in MH/EW cycles confir
that the surface relaxation of EW is the dominating eff
when paired with MH surface diffusion~or growth on kink
sites!. Our theoretical analysis also predicts that the EW sc
ing exponents will be imposed in the MH/EW cycles becau
EW growth has a smaller dynamic exponent (z52) com-
pared to that (z54) of the MH universality class.

2. One nonlinear process with a linear one

To simulate nonlinear processes we used two lattice r
izations BD and RSOS~with equivalent results! for the KPZ

FIG. 5. The roughnessW vs number of cyclesn in RD/EW
cyclical growth with different ratios of depositionT1 and dissolu-
tion T2 ~log-log plot!. System sizeL51024 and deposition o
20 000 particles~fixed! are used.

FIG. 6. lnW ~roughness! vs lnn ~number of cycles! of the
MH/EW cyclical process for different system sizesL.
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universality class and the KD II algorithm for MBE unive
sality. First we combine the KPZ universality with the EW
MH universality in a cycle to see the effect of the nonline
KPZ term on the scaling exponents. The exponents obta
areb50.311(5) anda50.51(1) for EW/BD. The exponen
b increased slowly with increasing system size and the
fective b reached a value close to the asymptotic one o
for the largest system size (L54096). For the reverse pro
cess BD/EW we obtainedb50.322(5) anda50.50(1) ~see
Fig. 9!. These asymptotic exponents are consistent with
KPZ b51/3 and, of course, witha51/2, which is the com-
mon value of EW and KPZ. To look at primary process
with different values ofa, KD I ( a151.5) deposition with
ballistic desorption (a250.5) was performed. We obtain th
asymptotic values of the exponents for MH/KPZ,b

FIG. 7. Height-difference correlation functionD(r ) vs distance
r for MH/EW cyclic growth is plotted after different number o
cycles ~log-log plot!. Inset: lnWs ~maximal roughness calculate
from Fig. 6! vs lnL.

FIG. 8. Data collapse for MH/EW cyclical growth~using the
exponents found from the graphs in Fig. 4 and Fig. 5! clearly shows
scaling in terms of cyclesn.
4-9
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50.311(15) anda50.48(2), both consistent with the KPZ
values. In all these cyclic processes the KPZ nonlinea
(¹h)2 remained relevant with respect to the linear ter
(¹2h or ¹4h) and the growth retained its scaling exponen
To show the opposite behavior where the nonlinear proc
is not the dominant one we simulated MBE/EW cycle
From our approximate RG procedure for the cyclic proce
it is clear that the fourth-order nonlinear perturbati
¹2(¹h)2 is irrelevant with respect to the linear EW ter
¹2h. In our simulation, when we allow surface relaxation
the EW model only to the nearest neighbor we get an ef
tive exponent (b'0.31) different from the EWb even for
the largest system size (L54096) we used. The reason ma
be that the next nearest neighbors of a chosen site affec
curvature dependent growth process in the simulation
MBE. When we consider next nearest neighbors for surf
relaxation in the EW process in MBE/EW cycles we geta
50.50(2) andb50.251(3), consistent with EW values.

3. Two nonlinear processes

Finally, we tried cycles consisting of two nonlinear pr
mary processes belonging to the KPZ and MBE universa
classes. Simulations of RSOS/RSOS~note that they are no
time-reversed images of each other because of the nonlin
ity! gave surfaces with KPZ scaling forT1ÞT2. For T1
5T2, however, EW behavior was found. This follows fro
the nonlinear KPZ terms in the primary processes having
same magnitude but opposite signs. Hence, they exactly
cel each other in the coarse-grained growth equations, yi
ing an EW process. When we combine KPZ growth~using
BD and KK! with MBE ~KD II ! we expect to get KPZ scal
ing for cycles due to the dominant KPZ nonlinearity~in d
5111, where perturbative RG is applicable!. Although both
the processes have the sameb ~in 111), in our simulation
of cycles we observe a slow increase ofb with increasing
system size when the BD model is used to simulate K

FIG. 9. lnW ~roughness! vs lnn ~number of cycles! of the simu-
lated KPZ/EW cyclic growth for different system sizesL. Inset:
roughness exponenta is extracted from the maximal valuesWs for
different L.
05160
y
s
.
ss
.
s,

c-

the
f
e

y

ar-

e
n-
d-

Z

growth. The value of the effectiveb for the largest system
size (L58192) did not reach the asymptotic value~1/3!.
Also, some sort of crossover behavior is observed, wh
varies depending on the ratio ofT1 andT2. The BD model
itself is not very efficient to reach the asymptotic regime
KPZ growth and probably that is reflected in the simulatio
of cyclical growth. When we used the RSOS model for t
KPZ part of the cycle, the asymptotic scaling exponents@a
50.50(1) andb50.335(5)# were obtained for relatively
small system sizes.

We also ran the corresponding absorption/absorption~or
growth/growth! cycles with identical roughness behavio
Figure 10 shows the results of a KD II/BD growth/grow
cycling simulation. The scaling exponents@b50.31(2) and
a50.48(2)# again acquire the corresponding KPZ values
expected.

V. EXPERIMENTS ON CYCLIC GROWTH

Experiments of cyclical growth were performed by me
electrodeposition/dissolution of silver. The scaling behav
of surface roughness has been studied for electrochem
deposition@15,35–37# and dissolution@17# processes sepa
rately. In cycling, however, metal electrodeposition follow
by a partial dissolution occurs. The substrate is plated fo
specific period of time and then the current is reversed
the metal is dissolved from the substrate. This phenome
is inherent in rechargeable batteries.

Multiple cycles were carried out on vapor-deposited silv
substrates, ranging from 1 to 20 cycles. The plat
solution contained 0.092M AgBr ~silver bromide!,
0.23M (NH4)2S2O3 ~ammonium thiosulfate!, and
0.17M (NH4)2SO3 ~ammonium sulfite!. Each cycle con-
sisted of plating for 5 min followed by 2.5 min of electro
dissolution with a current density of 0.8 mA/cm2. Image
and scaling analysis was done using an atomic force mi
scope. Roughness was measured aftern full cycles and after
the deposition part of the cycles~i.e., aftern1p cycles with

FIG. 10. The roughnessW vs n of the KD II/BD ~growth/
growth! cyclical process~log-log plot!. Inset: saturation roughnes
ln Ws vs lnL.
4-10



us
in
w

e
s
s
ac
ig
r

th
ea

c
r

us
h
it
p

lic

ro-
ents
cy-
du-
e

gth
eri-

in

the
oci-
is
ons

lp-
-

ical
ngly
ap-
ed,
own
ng a
for
r-
re-
be
tic

d.
lig-
ich

-
and
ibe
will
as to
ts.

n
e
an

ROUGHNESS SCALING IN CYCLICAL SURFACE GROWTH PHYSICAL REVIEW E64 051604
p52/3). A logarithmic plot of saturation rms height vers
number of cycles, shown in Fig. 11, resulted in a straight l
over two decades, indicating that the roughness scales
the number of cyclesn, with b50.52, whereb is the growth
exponent. The roughness for cycling and deposition alon
compared. The value ofb is 0.52 for the cycling processe
and 0.62 for deposition alone@38#, suggesting that processe
such as the erosion of rough areas and the filling in of surf
recesses are occurring more during cycling than in stra
deposition. However, the saturation rms height was large
magnitude for cycling than for straight deposition.

The results suggest that cycling causes smoothing of
surface recesses and valleys by the dissolution of large p
during the reverse plating process.

VI. CONCLUSIONS

In this paper we have discussedcyclical growth processes
using dynamic scaling in terms of the number of cyclesn
~replacing the time variablet of simple growth!. Given two
primary processes we have described how to derive the s
ing exponents of the combined cyclical process. Monte Ca
simulations of different cyclic processes were carried out
ing various simple pairs of primary growth processes. T
results of numerical simulations are entirely consistent w
our theoretical understanding. For linear processes, the
mary process with smaller dynamic exponentz always im-
poses its own scaling exponents on the combined cyc

FIG. 11. The roughness vs number of cyclesn in the electro-
chemical cyclical growth of silver~log-log plot!.
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process. The application of the RG method to cyclical p
cesses was presented to determine cyclical scaling expon
in the case of nonlinear primary processes. In particular,
clical scaling exponents are independent of the relative
ration (p or 12p) of the primary process and also of th
durationT of the cycle. However, bothp andT do affect the
amplitude of the roughness and also the crossover len
beyond which the asymptotic exponents show up. Exp
mental results on electrodeposition-dissolution cycles are
accordance with our scaling hypothesis.

Cyclic growth phenomena are widespread in nature:
sea shores are shaped by cyclical high and low tides ass
ated with lunar motion around the Earth, all floral growth
subjected to daily changes in light and seasonal variati
~which also affect many geological processes!, etc. Thus the
cyclical scaling theory introduced here might be found he
ful in future investigations of many natural growth phenom
ena.

Cyclical processes are also ubiquitous in technolog
applications. For example, corrosion processes are stro
affected by seasonal weather conditions. The most likely
plication of our theory is for rechargeable batteries. Inde
one of the breakdown mechanisms is due to the metal gr
on one electrode reaching the other one, thereby causi
shortcircuit. To test batteries today one has to run them
their full lifetime. Using cyclical scaling, however, accele
ated testing will become feasible. Results from measu
ments on fewer cycles for a short amount of time could
extrapolated to predict the battery lifetime under its realis
working conditions.

Finally, application to medicine may also be envisione
The first one that comes to mind is the treatment of ma
nant tumors. They are known to have rough surfaces wh
follow the kinetic growth scaling laws@16#. Under chemo-
therapeutic~or radiation! treatment they shrink and, hope
fully, disappear. These treatments are always cyclical,
thus the cyclical scaling approach should faithfully descr
the tumor’s recession. We hope that using this approach
help plan the schedule and dosage of the treatments so
make them more efficient while minimizing the side effec
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