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Roughness scaling in cyclical surface growth
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The scaling behavior of cyclical growtte.g., cycles of alternating deposition and desorption primary
processeésis investigated theoretically and probed experimentally. The scaling approach to kinetic roughening
is generalized to cyclical processes by substituting the number of cgcles the time. The roughness is
predicted to grow as? whereg is the cyclical growth exponent. The roughness saturates to a value that scales
with the system sizé& asL“, wherea is the cyclical roughness exponent. The relations between the cyclical
exponents and the corresponding exponents of the primary processes are studied. Exact relations are found for
cycles composed of primary linear processes. An approximate renormalization group approach is introduced to
analyze nonlinear effects in the primary processes. The analytical results are backed by extensive numerical
simulations of different pairs of primary processes, both linear and nonlinear. Experimentally, silver surfaces
are grown by a cyclical process composed of electrodeposition followed by 50% electrodissolution. The
roughness is found to increase as a power law,afonsistent with the scaling behavior anticipated theoreti-
cally. Potential applications of cyclical scaling include accelerated testing of rechargeable batteries and im-
proved chemotherapeutic treatment of cancerous tumors.
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I. INTRODUCTION ness. In general, the surface is characterized by the height

h(F,t) appropriate to ad=d— 1)-dimensional substrate of

From diffusion-limited aggregation to molecular beam ep-linear sizel. The width of the surfac&V(L,t) at a timet is
itaxy (MBE), kinetic models of growth and aggregation havegiven by
attracted much attentidi—5] in the last two decades due to R R
diverse interests in physics, biology, chemistry, and engi- W(L,t)={[h(r,t)—(h(r,t))]?)*2, (1)
neering. Kinetic roughening of nonequilibrium surface _
growth was of particular interest. Crystal growth, the growthwhere(h(r,t)) is the average height, which is linear in time
of bacterial colonies, and the formation of clouds in the up—(h(F,t»zvt, v being the average growtlor recessionve-
per atmospherg6] are all examples of nonequilibrium phe- |ocity. The angular bracket§ denote an average over both
nomena that grow self-affine rough surfaces. On a fundaateral sites and the ensemble of surface configurations.
mental level, the surface growth problem is a paradigm fora W(L,t) scales a$18]
class of problems in nonequilibrium statistical mechanics.
One crucial aspect of this class is the signature of scale in- W(L,t)~Lf(L/&(t)~Lf(L/tY), 2
variance and universality, very similar to those observed in 1 .
equilibrium critical phenomena, or in nonlinear dynamical Where&(t)~t" is the lateral correlation length arids the
systems[7]. Early investigations focused primarily on the Scaling function. For large time>L*
scaling behavior of the surface roughné¢és-5]. More re- W@
cently they have touched upon other aspects such as the dis- '
tribution of the surface width8,9], distributions of the \yhile for t<LZ
height and the average height velodj#;10,11, density of
extrema[12], persistenc¢l13], and maximal heighfl14]. W~tB,

Processes that generate rough surfaces can be divided into
two Classes:(i) growth processe@'g', by deposition’ ab- Whereﬂ-: alzis the grOWth eXponent. The height'difference
sorption where the surface grows by adding material; andcorrelation function
(i) recession processés.g., by erosion, dissolution, or de- . - )
sorption where material is being taken off such that a rough A(r,t)y=([h(ro+r,t) =h(ro,t)]), 3
surface is generated. Examples of clagsinclude crystal

growth [1-3], electroplating[15], and biological growth obeys scaling similar to that of the roughness:

[1,2,5,14, which have been studied widely. Claés) in- A(F 1)~ 122 (e £(t))~r 29F (£ 1£12). (4)
cludes chemical dissolutidi 7], and has received much less
attention than the first class. Forr<tl?
Self-affine surfaces generated by growtr recession
can be described using scaling analysis of the surface rough- A~r?e,
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while for r>t' We(L,n)~ L o(L/£(t))~ Lo (L/n*), 8)
where&.~n'# is the correlation length anf}. is the cyclical

A~1t%8, ; -
scaling function. For larga, n>L?

The relation between the height-difference correlation func-
tion A(r,t) defined above and the equal-time height-height W~L*,

correlation functiorC(r,t)=(h(ro+r,t)h(ro.t)) is simple: while for n<Lz

A(r,t)=2[C(0)—C(r,1)]. (5) Wen#.

Dynamic scaling in Fourier space is studied in terms of theyhere 3= a/z is the growth exponent.
structure factorS(ﬁ,t)=<h(c§,t)h(—d,t)>, whereh(q,t) is The rest of the paper is organized as follows. The next

the Fourier transform of the height(r,t). The scaling hy- Sec. Il is devoted to our analytical analysis. We will prove

pothesis Eq(2) can be translated to the Fourier space suctihat Eq.(8) for cyclical scaling holds asymptotically for lin-
that ear processes. In addition we will show how to obtain the

scaling exponents of the cyclic process, given those of the
two primary processes. An approximate renormalization
S(ﬁ,t)=q*d*2“g(q/t*1’z). (6) group RG approach is introduced to study nonlinear effects.
Section lll contains a brief review of the generic universality
The surface widthV can be readily calculated fro®(q,t) classes and their lattice algorithms. Then we introduce other
using the reIatiorWZ(L,t)=(1/La)258(ﬁ,t). In the theoret-  @lgorithms to implement numerlcally dlffer_ent recession pro-
ical analysis of surface growth it is convenient to work in C€SS€s. The actual results of our simulation of cyclical pro-
Fourier space and compute first the structure factor rathef€SSes are described in Sec. IV. In Sec. V the experimental
than the roughnes® itself. Also, in some experiments the indings from cyclical electrodeposition/dissolution of silver

surface is probed by scattering processes which provide i%re discussed. Section VI contains the conclusions with a
structure factor. iscussion of potential practical applications of the cyclical

All processes within the same universality class share th&¢2ling approach. A short summary of some of the results
same critical exponents. Their continuum growth equationd/as Published in Re{19].
differ at most by terms that are rendered irrelevant by the
renormalization group flow. The asymptotic continuum sto- Il. ANALYTICAL RESULTS
chastic equations corresponding to different universality
classegindexed byi=1,2, ...) are of thdorm of a Lange-
vin equation

The analytical approaches are based on a stochastic equa-
tion, like Eq.(7), which describes the growth process. Thus,
we begin by obtaining the stochastic equation of the cyclical
process. The first primary process is denoted=y and the
an(r,t) . second byi=2. The durations of the first and second pro-
g =Ai{h}+ %i(r,t) +v;, (7)  cesses ard,;=pT and T,=(1—p)T, respectively p and
1—p are the fractional parts of the two procegsdshe total

. . . . time period for one cycle i§=T;+T,. The cyclic growth
where Ai{h} is a local functional depending on the spatial equation in terms of the basic two processes can be ex-

derivatives ofh(r,t) and the noisep,(r,t) reflects the ran- pressed as
dom fluctuations in the deposition process and satis-

fies (7 (r,t))=0 and <77i(F11t1)77i(F21t2)>:2Di58(F1

- ah
—r5)8(t;—1ty). Some generic processes and their universal- Ez[athr m+v]O(P—1(t))
ity classes are reviewed latéBec. ).
In the present paper we focus on cyclical processes in +[ash+ 7,+v,]0(f(t)—p), 9)

which deposition and desorption are occurring alternately.
Examples of cyclical processes are abundant in nature andheref(t) is defined as the fractional part tfT and © (x)
technological applications. A technologically important ex-is the unit step function.
ample is rechargeable batteries, where metal is electrodepos-
ited on an electrode during the discharge, followed by partial
electrochemical dissolution of this metal during recharging.
In chemotherapy treatment of cancer the malignant cells are First we will consider cyclical processes for which both
subjected to a recessive cyclical process. the primary processes are linear. For linear proceAsgs

The basic premise of our scaling approach to cyclical pro=a;(V)h(r,t), wherea;(V) is a linear differential operator.
cesses is that the number of cycteshould substitute for the Time reversal symmetry is obeyed in this case if the height is
time variable. So we propose for cyclical processes that theneasured relative to the average height. The average height
scaling relation of Eq(1) be replaced with depends on the growthy (>0) and recessionv(<0) nature

A. Linear primary processes: Exact calculation ofSc(ﬁ,t)
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of the primary processes. In terms of the average velocity o (q n)=exp{—2§ n}s(q,0)
ve=pvy+(1—p)v,, it is given by o ¢ ’

D, _ _
. — -2 1— -2
(h(F-D) T=now+ 0. F (DO (D) + a exp( —2a,){1—exp(—2a,)}

+ - +u,[f(D)]}O(f(t)—p). D — 1—exp(—2a.n
{(wi—va)p+u[f()]}OF(t)—p) +—2{1—exq—2a2)} p( _c) ,
(10 az 1—exp(—2a,)
(14
The roughness is insensitive to the sigrvpand hence will — .
not distinguish between growth/growth and growth/recessiofvhereac=acT with
cyclical processes as long as the basic processes remain lin- a.=[a;p+ax(1—-p)]. (15

ear.
For linear processes Langevin equations of the form ofn the scaling limit of smalb, Eq. (14) for S.(g,n) reduces
Eq. (7) are easily solved in Fourier space to yi¢kbsuming to

spatial isotropy in the basal planthe structure factor D,

as(q)

SC(an)N {1_exq_2ac(Q)Tn]}a (16)

D
S(q,) =exp{ ~2a(q)t}S(q.0) + a(q){l—exp[—Za(q)t]}, with the effective noise strength for the cyclic process de-
(11 fined as

Dc=pD1+(1-p)Dy. 7
whereS(q,0) is the structure factor at=0, which contains
the information about the initial roughness. During thié
cycle of cyclical growth, the structure fact&.(q,[(n—1)

+p]T) generated by the first primary proce@s duration
T,=pT) is assigned as the initial condition for the second

primary process. The second process lastsTfer (1—p) T hi
. . igh frequency & 27/T) modes. Hence we can use the stan-
to yield the structure factd®.(q,nT) of the cyclical process dzgrd scgling gn(jilygibEé. (6)] of the structure factor to de-

aftern cycles. This is again used as the initial structure factor, . : : )
for the first process in then+1)th cycle. termine the scaling exponents in the case of cyclical growth.

During the first cycle, the structure factor after the After a large number of cycles the interface width be-

completion of the first brimary brocess becomes comes saturated. In that limit, EG1l5 becomesS.(q,n)
P P yp ~D./a.(q). The roughness exponent of the cyclic process is

determined by theq—O divergence of H.(q). Since
a;(g)~q*, it is the process with smaller; that dominates
the asymptotic cyclical roughness, and the roughness expo-
nent is given by a.=min(ay,a,)=3{min(z;,2,)—(d
(12 —1)}. The primary process with th&mallerroughness im-
poses its roughness exponent on the combined cyclical pro-
_ cess. The larger; appears as a correction to the scaling
wherea;=a;(q) T; was defined. This is the initial structure exponent. Whether or not it is the leading one depends on
factor for the second primary process and after the first comhow its contribution compares with that of the subleading
plete cycle we obtain term ina;(q) of the dominating primary process. Note that a
subleading term ina.(q) might affect the behavior on a
smaller scale, if its amplitude is large. In that case, the lead-
_ Yy ing behavior takes over only beyond a crossover lerigth
S(a,T2)=expi—2(a1+2,) (4.0 which both contributions are comparabl&ince the ampli-
— 1 — tudes ofa; anda, in S.(q,n) are proportional tg and (1
+exp—2a,} a—l[l—exp(—Zal)] —p), respectively, the longer the nondominant process lasts,
the larger is the crossover scale, as could be expected. How-
ever, although ira;(q) only the dominang;(q) is important
beyond this crossover scale, this is not the case for the effec-
tive noise correlatoD ., which is a scale independent con-
stant in Eq.(16). Thus, theamplitudeof the leading power-
whereS.(q,T)=95(q,T,). Proceeding in this manner, we fi- law roughness is determined by both the primary processes.

In terms of the effective parameteas andD., the above
structure factor for the cyclical process resembles that of a
generic linear growth procegsee Eq(11)] with the number
of cyclesn as the new time variable. Effectively the time is
being coarse grained over a period by eliminating the

_ D _
S<q,T1>=exp{—2a1}S<q,0)+a—j[l—exm—Zal)],

D, _
+ —[1—exp —2ay)], (13
a,

nally arrive at the structure fact@.(q,n)=S(q,nT) of the In the growing phase of the interface roughness, the dy-
cyclic growth aftem cycles as a geometric series which cannamic exponent will dictate the cyclical power law behav-
be readily summed to yield ior. Sincen is multiplied bya.=[a;p+a,(1—p)]T in Eq.
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(16) and a;(q) ~qg%, the process with smaller; will again +Aaz(d)(f(t)—p)]h(§ t)
dominate the cyclical dynamics in tlge—0 asymptotic limit ’

to yield z;=min(z;,z,). Then for the initial cycles {T +(p1+0v)O(P—F(1)+(n+v2)O(f(t—p)),

<L?) the surface width will scale as®, with 8.=a./z;. In
essence, the scaling exponents of the cyclic growth will be

identical to those of the primary process with the smailer  \yhereAa,(q)=a,(q)—a.(q) andAa,(q)=a,(q)—a.(q).

Let us now integrate each of the terms over one cycle, be-

B. Coarse-graining approach: The cyclic propagatoch(F,t) ginning with the left-hand side:

In the previous section the structure fac&};((i,t) [and

hence its Fourier transforr-T) SC(F,t)] was obtained ex-
actly. The same method of successive integration of the cy- 1 (n+1  gh(q,t)
clical equation of motion may be applied to derive the cyclic Tfn dt ot

propagatorG.(r,t) [or its FT G.(q,t)]. However, the ex-

pression is cumbersome and not very useful. Since we only 1 - -
need the long-time behavior, we will take a different route of = ?[H(q,n+ 1)—H(a.n)]
coarse-graining the equation of motion such that the equation

for time scales larger thah will be derived andSc(F,t) can

be read from it. This will also provide a direct connection to

the RG approach introduced in the next section to study the . .

behavior of nonlinear systems. —[h(g,nT)—H(q,n)]}.
Our starting point is Eq9), which we choose to integrate

over one cycle, such that the remaining equation will be a

difference equation between the average heights of two con-

1 N -
= 7[h@.(n+1)T)—h(g,nT)]

1 - -
+ ={[@(n+DT)—H(d,n+1)]

(20

e[nT,(n+1)T]. The integral will be divided into integra- ©nd term contains the differences between the height at the
tion over two intervals: intervall) [nT,nT+T,] and inter-  beginning of the cycle and its average over a cycle. This term

val (2) [nT+T,,(n+1)T]. We define the average height in thus reflects the behavior within each cycle and is thus irrel-
the nth cycle as evant to the behavior on the coarse-grained scale and will be

Our goal is to obtain the equation of motion fdr(F,n)

R 1 (n+1 R dropped.(Note that it will vanish asymptotically and it is

H(r,n)= ?f dth(r,t). (18 irrelevant since in the continuum limit it features a second
n derivative with respect tb.)

The integration of the first term on the right-hand side

on time scales>T. The FT of Eq.(9) is yields
ﬂh(a't)—[a<*>h<*t>+ +01]10(p—1f(1)) 1 (n+t
gt AT [ addn@od-ag@m@n. @
+[a(q) h(q,t) + 7+ 0,10 (F(1) —p) (19
=a(qh(q,t)+[Aa;(q)O (p—f(t)) Integrating the second term,
1 (n+1 N R R
?fn [Aa;(q)®(p—f(t))+Aay(q)O(f(t)—p)]h(g,t)dt
Aa,(q) (n+p . Aay(q) [+l .
_ ;qfn h(q,t)dt+ _T_qfnﬂ]h(q,t)dt
=Aay(q lfmph* dtt+Aay(q)(1— 1fn+lh* d
=Aa;(q)p ./, (q,t)dt} +Aay(q)(1—p) o) (g,t)dt

=Aay(q)p Hy(q,n)+Aa,(q)(1—p)H,(q,n)

=[Aa;(q)p+Aay(q)(1—p)H(q,n)+{Aay(q)p[H1(q,n)—H(q,n)]+Aay(q)(1—p)[Ha(q,n) —H(q,n)1},
(22)
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WhereHl((:i,n) andHZ(a,n) are the average he|ghts during process. Slmllarly, we have shown in the preViOUS subsection

the two primary processes respectivébn thenth cyclg. ~ how to obtain the propagat@.(q.,n) of the same effective
Upon coarse graining linear, noncyclical process. The second step is to take the

effective “free” propagatorG.(q,n) and then add back all
1 (n+1 R R R the nonlinear terms of the primary processes as perturba-
$Jn [Aay(q)O(p—f(t))+Aaq)O(f(t)—p)Ih(q,t)dt  tions. The bare couplings of the nonlinear terms are multi-
plied by p and (1- p) to take into account the relative dura-
- - N1 — 3 tions of the two primary processes. The third and the final
[Aay(@)p+Aaz(a)(1-p)IH(G.n). @3 step is to study the RG flow of the parameters and determine
This term contains information on the structure factor withinthe fixed points of the transformations and hence the scaling
the cycle and must vanish in the coarse-grained equatiogxponents. This dynamic RG procedure is approximate in the

sincea, was chosefiEq. (15)] such that sense that the initial flow of the couplings is shifted, but as
long as the starting point is not close to a separatrix in the
(a;—ag)pt(ay—ay)(1—p)=0. (24 parameter spacg.e., a border line between basins of attrac-
) ) ) tion of two different fixed pointsthis will not alter the ulti-
The velocity term yields the average velocity mate fixed point of the RG flow.

1 (ni1 The cyclical process might have only one no_nlinear pri-
_f di[v,0(p—f(t)+v,0(f(t)—p)]=v.. (25  mary process with the nonlinear perturbation being relevant
TJn under RG transformations. Then the cyclical scaling expo-
nents are given by the exponents of the nonlinear primary
The noisesy are random variables and we define this coarseprocess. Otherwise, the nonlinear term turns out to be irrel-
grained term by evant with respect to the dominant linear tefpnesent in the

L coarse-grained cyclic free propagataf the other(linear)
n+e n+i rimary process, of which the scaling exponents control the
me(n) == f dt () + fwdt mat)|. (@6 L Cth, 9 &P

Both the primary processes might contain nonlinear terms

It obeys(7.(n))=0 and(».(n) n.(m))=2D:5,m, andD.  which are treated as perturbations to the free propagator as

satisfies Eq(17). described above. In most cases, one of the nonlinear terms
Collecting all the terms, the coarse-grained differencewill make the other one irrelevant under the RG flow and the
equation forH(q,n) is primary process con_taining the relevant nonli_nearity will
carry through its scaling exponents for the cyclical process.
AH(q,n) . R If both the nonlinear terms are relevant, then the possibility
Wzac(q)H(q,n)Jr ne(q,n)+uv.. (27 of new cyclical growth exponentdifferent from those of

both primary processgsannot be ruled out. A prime candi-
Forn>1, the difference equation is equivalent to the corre-date for such behavior will be a cyclical processdr-2
+1 in which one process has a relevant nonlinearity while

sponding differential equatioAH/An=gH/dn. ! g
The cyclical propagator may be read from this "neartr;e S([aco]nd process has a relevant anisotropy in the basal
plane[20].

equation:

Ge(G,n—m)=exp{—aJ(q)(n—m)}O(n—m). (28  !l. GROWTH MODELS AND UNIVERSALITY CLASSES

This propagator obeys the usual relation with the structure In th|.s section we present a brief review of the basu; mod-
els of kinetic growth. The discrete lattice models for simula-

factor if n is treated as a continuous variable replacing the; . . .

time t: tions corresponding to each universality class are presented.
We were able to generalize most of the lattice models for
desorption processe@everse of growth to be used in

[1—|Gc(ﬁ,n)|2]_ (29 absorption/desorption cycles. These desorption algorithms

ac(q) are described in detail.

D¢

S.(q,n)=

C. Nonlinear primary processes A. Random deposition

Stochastic nonlinear equations of this type can be ana- 1hiS is the simplest of all possible growth processes.
lyzed using the perturbative dynamic RG approd2/23. From a randomly ghosen site above the surface, a part_lcle
We develop an approximate RG technique for cyclical Ioro_falls vertlcall_y _untll it re_aches the_ top of the column under it,
cesses with one or both the primary processes being nonliftnereupon it is deposited. In this case
ear. The first step is to set asitfer the initial RG iterations Aur=0
all the nonlinearities from the primary processes and take RDT
only the linear Langevin equations. We showed above howirhe scaling exponents afg=0.5 in all dimensions, buk is
to solve for the structure factor of such cyclical processesot defined for this model because the interface roughness is
and get an effectives.(q,n) [see Eq.(16)] of a noncyclic  never saturated.
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1.75 - - - . y straight line fitted to the early time roughness yields the
growth exponent3=0.23+0.02. The roughness exponent
a=0.48+0.03 is extracted from the dependence of the satu-
ration roughness on the linear size of the syst@met of

Fig. 1). These values of the scaling exponents are in agree-
ment with the corresponding EW values. Indeed, the surface

3 roughness for the desorption process shdfig. 1) very
i similar behavior to that obtained for the growth procgss.
So the discrete rules described above can be treated as a
valid algorithm for EW desorption.
C. Kardar-Parisi-Zhang universality
125 . . . . ; This describes growth in a direction locally normal to the
- 1 3 5 7 9 interface[23]. Its leading effect is to add a nonlinear term to
Int the EW surface relaxation term,
FIG. 1. The roughnes® vs t in the EW desorption process N
(log-log plob. Inset: saturation roughnessWj vs InL. Acpr= vV2h+ —(Vh)2
> .

The random depositiofRD) algorithm is as follows. A
columni is chosen =1+ 1) randomly and its height(i,t) Scaling exponents for the Kardar-Parisi-ZhakdPZ) equa-
is increased by 1. For the reverse process we just decreatien are exactly known iml=1+1: «=1/2, =1/3, and
the heighth(i,t) of an arbitrarily chosen siteby 1. z=3/2. Ind=2+1 approximate values for the exponents
(from numerical simulationsare «=0.39, 8=0.24, andz
=1.61. KPZ growth can be simulated using various atomis-
) o N tic growth algorithms, of which we will describe two be-

In this model we have surface relaxati@n addition to  cause we generalized those to the case of desorption and they
the random depositigrwhich is introduced by the term will be used in our simulations of cyclical growth.

AEW: szh.

B. Edwards-Wilkinson universality

1. Ballistic deposition model

We can exactly calculate the scaling exponents (3 A particle is released from a randomly chosen position

—d)/2, B=(3—d)/4, and z=2. In Edwards-Wilkinson above the surface, located at a distance larger than the maxi-

(EV\/) growth [21] a random|y deposited partide can diffuse mum helght of the interface. The particle follows a Straight

along the surface up to a finite distance and sticks to a loca/ertical path until it reaches the surface, whereupon it sticks

height minimum. Due to this relaxation, the surface become§24.29. If h(i,t) is the height of the column (chosen ran-

smooth compared to the random growth model and finallydomly) at timet then the ballistic depositiotBD) growth

the interface roughness is saturated because of the correlale is h(i,t+1)=max{h(i—1t),h(i,t) +1h(i+1t)]. For

tions among the neighboring heights, to a vatue®, where  the reverse process the algorithm will be changedh(iot

L is the lateral size. +1)=min[h(i—1t),h(i,t) = Lh(i+1t)]. Although physi-
cally unrealistic(contrary to its growth counterparthis de-

Family model sorption model is formally the “anti-BD” process.

This model was introduced by Fami[22] to simulate
EW growth. A particle is dropped on a randomly chosen
columni (in d=1+1) and sticks to the top of the column This algorithm(also known as the KK modgintroduced
i, i+1, ori—1, depending on which of the three columns by Kim and Kosterlitz[26] gives KPZ exponents and is
has the smallest height. To simulate a desorption procedgiown to yield reliable results even for small system sizes.
(with EW exponents the heighth(i,t) of the sitei is com-  The growth rule is to randomly select a site on a culac (
pared to the heights(i —1t) andh(i+ 1) of the neighbor- —1)-dimensional lattice and to permit growth by letting the
ing sites. Then we simply take a particle off the columnheight of the interfacen;—h;+1 provided the restricted
i, i+1, ori—1, depending on which of the three columns solid-on-solid (RSOS condition on neighboring heights
has the largest height. In the case of a tie involving theisite |[Ah|=0,1, ... N(N=1) is obeyed at all stages. In a similar
we take out a particle from that site, otherwise the tie isway we can simulate an erosion process where we decrease
broken randomly with equal probability. The whole processthe height f;—h;—1) of the sitei provided the RSOS con-
can be thought of as desorption with surface relaxation. Théition |Ah|=0,1, ... N is satisfied. In Fig. 2 we show the
relaxation length is restricted to the nearest neighbors beesults of simulations using this desorption rule. The values
cause the scaling exponents are independent of the relaxatiofi the scaling exponents 3&0.33+0.02 and a=0.52
length. In Fig. 1 the roughned§ is plotted against time on a *0.02) obtained are consistent with the corresponding KPZ
logarithmic scale for increasing system size. The slope of thealues.

2. Restricted solid-on-solid model
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' ' ' ' 2. Kim—Das Sarma model |
2r 2 ' i Choose a siterandomly and add a particle on-1, i, or
g 11 | ot i+1 (ind=1+1), depending on which site has the largest
= " oo O g curvatureV2h=[h(x+1)+h(x—1)—2h(x)] [31]. If there
0 . ot v is more than one site satisfying the larger curvature condi-
1 ® I:L ! o x Kok ox XXX tion, we choose one among them randomly. If the curvature
a4 "3‘; X X X X % X X of the sitei is one of the larger curvatures, we add the par-
z ticle at sitei.
++++++++++++
or IE=3§ + . E. Molecular beam epitaxy universality
= X
t:;g% X The most relevant universality class in the context of con-
L512 =m served epitaxial growth is the molecular beam epitaxy uni-
versality [which also goes by the name Lai—Das Sarma-—
A : : : ' Villain universality] [32,33. This is described by the

(=]
n

4 6 8

nt nonlinear version of the MH surface diffusion equation with

— 4 2 2
FIG. 2. The roughnes®/ vst in the KPZ (RSOS desorption Amge=~KV h+A,VE(Vh)~

processlog-log ploj. Inset: maximal roughness W, vs InL.
- ) ) The scaling exponents are known from a one-loop RG cal-
The RSOS deposition or desorption rule described abovg|ation which givesy=(5—d)/3, B=(5—d)/(7+d), and

is defined starting from a flat interface &t 0. A cyclical z=(7+d)/3. There are two discrete models to simulate the
surface growth model with a primary process not obeying th?\/IBE universality class.

RSOS condition can destroy the height difference restriction
of the RSOS model. We can still use a growth rule similar to
the RSOS model described above, which seems to behave
like KPZ growth (as far as the scaling exponents are con- This model is similar to the DT model described above
cerned. In this extended model of RSOS, we choose aisite with the difference that if an atom falls in a kink site it is
randomly and add a particle on it only if the height of thatallowed to break its bonds and jump either down or up to the
site is less than or equal to the heights of the neighboringiearest kink site with the smallest step heig3].

sites (which would give us the normal RSOS witlh|

=0,1 starting from a flat interfageFor the reverse process a 2. Kim—Das Sarma model II

particle is taken off a site only if the height of that site is This is a generalization of the Kim—Das SarrfkD)
greater than or equal to the heights of the neighboring site§ﬁoolel | [Sl]gdescribed above. The only difference is

that the linear curvature is replaced by a nonlinear
curvature [h(x—1)+h(x+1)—2h(x)]—(N/2)}{[h(x—1)

In conserved growth situations where “surface diffusion” — p(x)]2+[h(x+1)—h(x)]2}.
is dynamically significant in the absence of any EW relax-
ation process, the growth process may belong to the Mullins-
Herring (MH) universality classlalso known as the Das IV. COMPUTER SIMULATIONS
Sarma—TamborenetDT) or Wolf-Villain class [27-29. OF CYCLICAL GROWTH
The linear surface diffusion equation for MH growth has a
term

1. Lai—Das Sarma model

D. Mullins-Herring universality

A. Introduction

4 1. Simulation methods
AMH =—-KV h . . .
To test our scaling hypothesis for cyclical processes we

The critical exponents for the MH growth universality are performed numerical simulations oh=1+ 1 using specific
exactly known theoretically:a=(5—-d)/2, B=(5—d)/8, discrete growth models described above. The system size in
andz=4. In one dimensiond=1+1), the roughness expo- the simulations was changed between 128 and 4096 lattice
nent «=1.5 exceeds unity, implying that the large scalespacings. A periodic boundary condition is employed so that
steady state morphology of the growing interface is not selfcolumnsi andi+L (L is the system sizeare equivalent. A
affine ind=1+1. The issue of whether MH universality is typical cycle consisted of a deposition of 5—-20 lay&reer-
only a crossover phenomenon or a true universality class iage number of particles deposited per)sited desorption of
still debated[30]. There are two lattice models to simulate between 10% and 100% of the deposited amount. The maxi-
MH growth. mum number of cycles varied between 500 and 10000 to
reach saturation. To obtain good statistics we took an aver-
1. Das SarmaTamborenea model age over 50-5000 independent runs, depending on the pairs
In this model[28] a particle, after being deposited on a of primary processes and the system size. The smaller the
randomly chosen site, relaxes only to the nearest kink sitegsystem the larger was the number of runs to obtain good
i.e., it seeks only to increase the number of neighbors. result.
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FIG. 4. InW (roughnespg~-Int of the MH/EW cyclic process.
The DT process increases the roughness and EW smooths the sur-
face in a single cycle, but the average roughness increases and gives
rise to scalingin terms of cycles

FIG. 3. Height profile for RD/EW cyclical growthi. =512 and
40 particles/site of random depositi¢solid line) and 20 particles/
site of EW dissolution(broken ling are used in one cycléoth
axes are in lattice units

roughness. The average behavior of surface roughness in
2. Time dependence of surface roughness terms of cycles increases and gives rise to scaling. The scal-

In a single process of growth or desorption, the roughnesig exponents are determined by the relevéntthe RG
scales with timdEq. (2)]. For cycling, we have theoretically Sensgterms of the primary processes. In our exam(siig.
shown that time is replaced by a different scaling variable4), MH/EW cycles are dominated by the surface relaxation
the number of cycles. One might ask: how does the cycli- of the EW model and the process gives rise to EW expo-
cal roughness change with actual time leading to a scaling ifénts. The change in roughness within a cycle can be thought
terms ofn? Below we discuss how the t|n‘(@ dependence of as fluctuations in the average behavior, and becomes less
of the surface roughness of cyclical growths can be studiedhportant as the number of cycles is increagiéid. 4). Simi-
to understand the emergent scaling behavior in terms of thi@r scaling(in terms ofn) continues to hold for cyclic growth
number of cycles. when one or both the primary processes are nonlinear.

Consider a linear growtkor erosion process. The struc-

ture factor for this can be given by E(L1). From that ex- 3. Extraction of scaling exponents

pression ofS(q,t), the surface widthN2=(1/Ld)EaS(ﬁ,t) ' The growth exponeng is ex.tracted for different system
can be expressed §34] sizesL. The roughnes$V vs n is plotted on a logarithmic
scale and the slope of the best fitted straight line yields the
wz(t):wg(t)+w$|at(t), (30 exponentB. The value quoted is from the largdstonce the

effective B became close to the asymptotic valu€rom
Wy a¢(t) is the roughness for growth induced on a flat initial w,(L)=W(L,»), the saturation width dependence lorthe
substrate, anlV, is the contribution due to the width of the roughness exponent can be calculated. Simulation results
rough substrate surface. Since the total width is the sum of for different system sizes are used to ploWg~In L, which
decreasing\(/p) and an increasingWs,;) part, competition s fitted to a straight line whose slope measures the exponent
between the two terms can make it increase or decrease from |n some cases we checked independently the value of
the initial roughnesd\,(0) for some timefeventually the  from the scale dependence of the height-difference correla-
roughness will exceeW/,(0)]. tion function[from a log-log plot ofA(r,t) vsr and fit to Eq.

In cycling two primary processes act alternately. The(4)].

roughness generated by one process is taken as the initial
roughnesdVy(0) for the second process. In Fig. 3 the height B. Simulation results
profile is shown for cyclic growth with random deposition
and EW desorption. EW dissolution smooths the very rough
surface produced by random growth in one cycle. Also note For linear primary processes, we looked at the possible
that the roughness increases with the number of cytlés  pairwise combinations of RD, EW, and MH universality
Fig. 4 we show the actual time dependence of the simulatedlasses using the absorption/desorption algorithms described
cyclical growth composed of two linear primary processesearlier in this paper. When EW and MH processes are com-
belonging to the EW and MH universality classes. In onebined with RD, we obtain EW and MH exponents, respec-
cycle, MH growth increases the surface width and then EWively, because those are the processes that generate correla-
surface relaxation smooths out the surface to lessen th#ons on top of the random growth. Figure 5 shows, for the

1. Linear primary processes
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FIG. 5. The roughnessV vs number of cycles1 in RD/EW FIG. 7. Height-difference correlation functia(r) vs distance
cyclical growth with different ratios of depositiofi, and dissolu- " for MH/EW cyclic growth is plotted after different number of
tion T, (log-log ploy. System sizeL=1024 and deposition of cycles _(Iog-log ploY. Inset: InW; (maximal roughness calculated
20000 particlegfixed) are used. from Fig. 6 vs InL.

RD/EW cyclical process, that the value @f(asymptotically ~ universality class and the KD Il algorithm for MBE univer-
is independent of the relative duration of the two primarysality. First we combine the KPZ universality with the EW or
processes. MH/EW cycles produce an asymptotic cyclicaMH universality in a cycle to see the effect of the nonlinear
scaling with EW exponentg3=0.258(5) (Fig. 6) and « KPZ term on the scaling exponents. The exponents obtained
=0.52(3) (Fig. 7). We have also performed data collapseare 3=0.311(5) andx=0.51(1) for EW/BD. The exponent
(Fig. 8 to establish the validity of our scaling hypothesis. 8 increased slowly with increasing system size and the ef-
The asymptotic EW exponents in MH/EW cycles confirm fective 8 reached a value close to the asymptotic one only
that the surface relaxation of EW is the dominating effectfor the largest system sizé € 4096). For the reverse pro-
when paired with MH surface diffusiofor growth on kink  cess BD/EW we obtaine@=0.322(5) andx=0.50(1) (see
siteg. Our theoretical analysis also predicts that the EW scalFig. 9). These asymptotic exponents are consistent with the
ing exponents will be imposed in the MH/EW cycles becausé&KPZ 8=1/3 and, of course, witla=1/2, which is the com-
EW growth has a smaller dynamic exponemt=Q2) com- mon value of EW and KPZ. To look at primary processes

pared to that£=4) of the MH universality class. with different values ofa, KD | (a4=1.5) deposition with
ballistic desorption ¢,=0.5) was performed. We obtain the
2. One nonlinear process with a linear one asymptotic values of the exponents for MH/KPZ

To simulate nonlinear processes we used two lattice real-

izations BD and RSO8with equivalent resulisfor the KPZ - T ' T T T T
25 —— 45t
L=128 + i
II:=256 X !!gﬁ
=512
2r L=1024 o -!;DDDDDDD 2
L=2048 + 80 ~
L-409% = A e J
Blx S 25
g 18 al g
- ;Q* SOOXXXXHKHKKK £
E QEXXXX 3 5
c X
£ 1 ¥§%i++++++++++++++++++ 1 .B. :
et 350 w L=1024 ©
o5 L : (2048
9 [ $+ i a
[ ] -4 1 1 1 1 1 1
. o 16 14 -2 10 8 6 -4 -2
01 2 3 4 5 6 7 8 9 In (n/L%)

Inn
FIG. 8. Data collapse for MH/EW cyclical growtfusing the

FIG. 6. InW (roughness vs Inn (number of cycles of the  exponents found from the graphs in Fig. 4 and FigclBarly shows
MH/EW cyclical process for different system sizes scaling in terms of cyclen.
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ate cyelic growth for different syst_em SIzes Inset. growth) cyclical procesglog-log ploY. Inset: saturation roughness
roughness exponemnt is extracted from the maximal valugg; for InW. vs InL
A .

differentL.

growth. The value of the effectivg for the largest system
=0.311(15) and»=0.482), both consistent with the KPZ size (L=8192) did not reach the asymptotic val(®/3).
values. In all these cyclic processes the KPZ nonlinearityAlso, some sort of crossover behavior is observed, which
(Vh)? remained relevant with respect to the linear termsvaries depending on the ratio & andT,. The BD model
(V2h or V*h) and the growth retained its scaling exponents.itself is not very efficient to reach the asymptotic regime of
To show the opposite behavior where the nonlinear processPZ growth and probably that is reflected in the simulations
is not the dominant one we simulated MBE/EW cycles.of cyclical growth. When we used the RSOS model for the
From our approximate RG procedure for the cyclic processKPZ part of the cycle, the asymptotic scaling exponégits
it is clear that the fourth-order nonlinear perturbation=0.50(1) andB8=0.335(5) were obtained for relatively
V2(Vh)? is irrelevant with respect to the linear EW term small system sizes.
V2h. In our simulation, when we allow surface relaxation of ~ We also ran the corresponding absorption/absorpfion
the EW model only to the nearest neighbor we get an effecgrowth/growth) cycles with identical roughness behavior.
tive exponent $~0.31) different from the EW3 even for  Figure 10 shows the results of a KD [I/BD growth/growth
the largest system sizé £4096) we used. The reason may cycling simulation. The scaling exponerjtg=0.31(2) and
be that the next nearest neighbors of a chosen site affect the=0.48(2)] again acquire the corresponding KPZ values as
curvature dependent growth process in the simulation oéxpected.
MBE. When we consider next nearest neighbors for surface
relaxation in the EW process in MBE/EW cycles we get V. EXPERIMENTS ON CYCLIC GROWTH

=0.50(2) andB=0.2513), consistent with EW values. . )
Experiments of cyclical growth were performed by metal

electrodeposition/dissolution of silver. The scaling behavior
of surface roughness has been studied for electrochemical
Finally, we tried cycles consisting of two nonlinear pri- deposition[15,35—37 and dissolutio{17] processes sepa-
mary processes belonging to the KPZ and MBE universalityrately. In cycling, however, metal electrodeposition followed
classes. Simulations of RSOS/RSQfte that they are not by a partial dissolution occurs. The substrate is plated for a
time-reversed images of each other because of the nonlineapecific period of time and then the current is reversed and
ity) gave surfaces with KPZ scaling for,#T,. For T, the metal is dissolved from the substrate. This phenomenon
=T,, however, EW behavior was found. This follows from is inherent in rechargeable batteries.
the nonlinear KPZ terms in the primary processes having the Multiple cycles were carried out on vapor-deposited silver
same magnitude but opposite signs. Hence, they exactly casubstrates, ranging from 1 to 20 cycles. The plating
cel each other in the coarse-grained growth equations, yieldsolution contained 0.092 AgBr (silver bromide,
ing an EW process. When we combine KPZ growailsing  0.23V (NH,),S,0;  (ammonium  thiosulfate  and
BD and KK) with MBE (KD Il) we expect to get KPZ scal- 0.1™ (NH,),SO; (ammonium sulfitt Each cycle con-
ing for cycles due to the dominant KPZ nonlinearity d  sisted of plating for 5 min followed by 2.5 min of electro-
=1+1, where perturbative RG is applicapléithough both  dissolution with a current density of 0.8 mA/émimage
the processes have the safdin 1+ 1), in our simulation and scaling analysis was done using an atomic force micro-
of cycles we observe a slow increase @fwith increasing scope. Roughness was measured aftieidl cycles and after
system size when the BD model is used to simulate KPZhe deposition part of the cyclése., aftern+ p cycles with

3. Two nonlinear processes
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1000 . . process. The application of the RG method to cyclical pro-
cesses was presented to determine cyclical scaling exponents
in the case of nonlinear primary processes. In particular, cy-
clical scaling exponents are independent of the relative du-
ration (p or 1—p) of the primary process and also of the
durationT of the cycle. However, both andT do affect the
amplitude of the roughness and also the crossover length
beyond which the asymptotic exponents show up. Experi-
mental results on electrodeposition-dissolution cycles are in
accordance with our scaling hypothesis.
Cyclic growth phenomena are widespread in nature: the
Mgg;g:g: : sea shores are shaped by cyclical high and low tides associ-
ated with lunar motion around the Earth, all floral growth is
” . . subjected to daily changes in light and seasonal variations
0.1 1 10 100 (which also affect many geological processegc. Thus the
Number of Cycles cyclical scaling theory introduced here might be found help-
ful in future investigations of many natural growth phenom-
ena.
Cyclical processes are also ubiquitous in technological
applications. For example, corrosion processes are strongly

p=2/3). A logarithmic plqt Of. saturation rms height VErSUsS affected by seasonal weather conditions. The most likely ap-
number of cycles, shown in Fig. 11, resulted in a straight line

over two decades, indicating that the roughness scales Wit%lication of our theory is for rechargeable batteries. Indeed,
the number of cycles, with 8= 0.52, whereg is the growth one of the breakdown mechanisms is due to the metal grown

exponent. The rouahness for cveling and deposition alone i2" °"€ electrode reaching the other one, thereby causing a
P ; g yeing P Shortcircuit. To test batteries today one has to run them for

compared. The value @8 is 0.52 for the cycling processes : e . : .
e ) their full lifetime. Using cyclical scaling, however, acceler-
and 0.62 for deposition alori@8], suggesting that processes ated testing will become feasible. Results from measure-

such as the erosion of rough areas and the filling in of surfacpnentS on fewer cycles for a short amount of time could be

recesses are occurring more during cycling than in Stra'g.hc!)xtrapolated to predict the battery lifetime under its realistic
deposition. However, the saturation rms height was larger "Qvorking conditions

magnitude for cycling than for s;ra|ght deposition. . Finally, application to medicine may also be envisioned.
The results suggest that cycling causes smoothing of th‘I:’he first one that comes to mind is the treatment of malig-

surface r:ecesses an? yalleys by the dissolution of large peah%m tumors. They are known to have rough surfaces which
during the reverse plating process. follow the kinetic growth scaling lawg16]. Under chemo-
therapeutic(or radiatior) treatment they shrink and, hope-
fully, disappear. These treatments are always cyclical, and
In this paper we have discussegtlical growth processes thus the cyclical sc_:aling approach shoqld fai;hfully describ_e
using dynamic scaling in terms of the number of cyafes the tumor’s recession. We hope that using this approach will
(replacing the time variableof simple growth. Given two  help plan the schedule and dosage of the treatments so as to
primary processes we have described how to derive the scdnake them more efficient while minimizing the side effects.
ing exponents of the combined cyclical process. Monte Carlo
simulations of different cyclic processes were carried out us- ACKNOWLEDGMENTS
ing various simple pairs of primary growth processes. The
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